10 TEARS OF CREATING TOMORROW

R-Matrix Analysis of Reactions in the ¹⁷O System using EDA

G. M. Hale and M. W. Paris

T-2

Los Alamos National Laboratory

Outline

- Basic properties of scattering theory satisfied by the Rmatrix formalism
 - Unitarity, reciprocity (TRI), causality
- Energy Dependent Analysis (EDA) code
 - Relativistic relations
- Recent results from the ¹⁷O system analysis
 - Fits, data renomalizations, etc.
- Comparisons with Leal cross sections
- Summary and outlook

R-matrix Formalism

INTERIOR (Many-Body) REGION (Microscopic Calculations)

compact, hermitian operator with real, discrete spectrum; eigenfunctions in Hilbert space $|\psi^{+}\rangle = (H + \mathcal{L}_{B} - E)^{-1} \mathcal{L}_{B} |\psi^{+}\rangle$

ASYMPTOTIC REGION (S-matrix, phase shifts, etc.)

$$(r_{c'}|\psi_c^+\rangle = -I_{c'}(r_{c'})\delta_{c'c} + O_{c'}(r_{c'})S_{c'c}$$

or equivalently,

$$(r_{c'}|\psi_c^+\rangle = F_{c'}(r_{c'})\delta_{c'c} + O_{c'}(r_{c'})T_{c'c}$$

Measurements

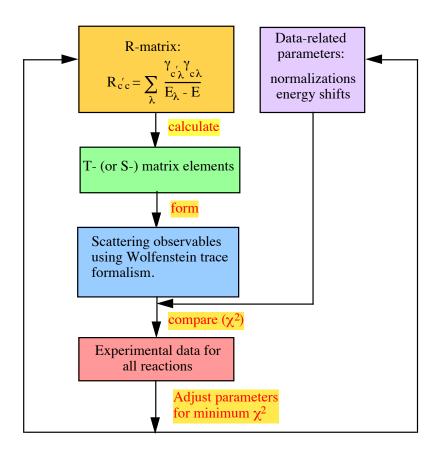
SURFACE

$$\mathcal{L}_B = \sum_c |c|(c) \left(c \left(\frac{\partial}{\partial r_c} r_c - B_c \right),\right)$$

$$(\mathbf{r}_{c}|c) = \frac{\hbar}{\sqrt{2\mu_{c}a_{c}}} \frac{\delta(r_{c} - a_{c})}{r_{c}} \left[\left(\phi_{s_{1}}^{\mu_{1}} \otimes \phi_{s_{2}}^{\mu_{2}} \right)_{s}^{\mu} \otimes Y_{l}^{m}(\hat{\mathbf{r}}_{c}) \right]_{J}^{M}$$

$$R_{c'c} = (c' \mid (H + \mathcal{L}_B - E)^{-1} \mid c) = \sum_{\lambda} \frac{(c' \mid \lambda)(\lambda \mid c)}{E_{\lambda} - E}$$

Basic Properties of Scattering Theory


- 1) Unitarity ($SS^{\dagger} = S^{\dagger}S = 1$): enforced by R_B being real and symmetric ($H+\mathcal{L}_B$ hermitian).
- 2) Reciprocity (TRI): enforced by the symmetry of R_B and all asymptotic matrices (such as S) derived from it.
- 3) Causality: no poles of **S** in upper-half k-plane. Poles of R_L are all in the lower half-plane, at $k = k_0$ and $-k_0^*$.

Note that the MLBW approximation violates *all* of these basic principles.

Scheme and Properties of the EDA Code

Energy Dependent Analysis Code

- Accommodates general (spins, masses, charges) two-body channels
- Uses relativistic kinematics and R-matrix formulation
- Calculates general scattering observables for $2 \rightarrow 2$ processes
- Has rather general data-handling capabilities (but not as general as, e.g., SAMMY)
- Uses modified variable-metric algorithm that gives parameter covariances at a solution

Relativistic form(s) for R in EDA

$$R = \sum_{\lambda} \frac{\gamma_{\lambda} \gamma_{\lambda}^{T}}{E_{\lambda}(s) - E(s)},$$

$$s = (p_1 + p_2)^2 = (p_3 + p_4)^2 = (\mathcal{E}_{rel} + M)^2.$$

Forms for $E_{(\lambda)}(s)$:

a)
$$\sqrt{s} - M = \mathcal{E}_{rel}$$

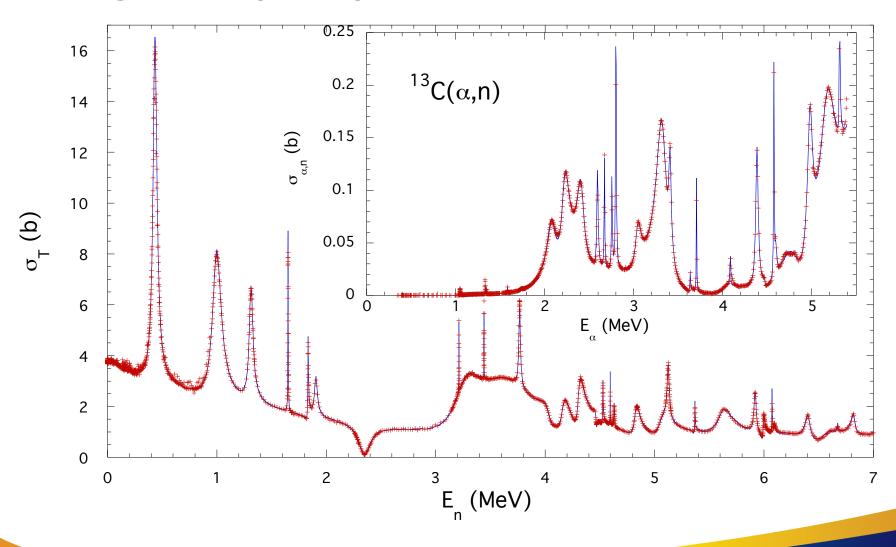
b)
$$\frac{s-M^2}{2M} = \left(1 + \frac{\mathcal{E}_{rel}}{2M}\right) \mathcal{E}_{rel}$$

c)
$$\frac{(s-M^2)(s-\Delta^2)}{8s\mu}$$
 (Layson)

d)
$$\mathcal{E}_{nr}$$
 (norel=1)

$$\begin{cases} M = m_1 + m_2 \\ \Delta = m_1 - m_2 \\ \mu = \frac{m_1 m_2}{m_1 + m_2} \end{cases}$$

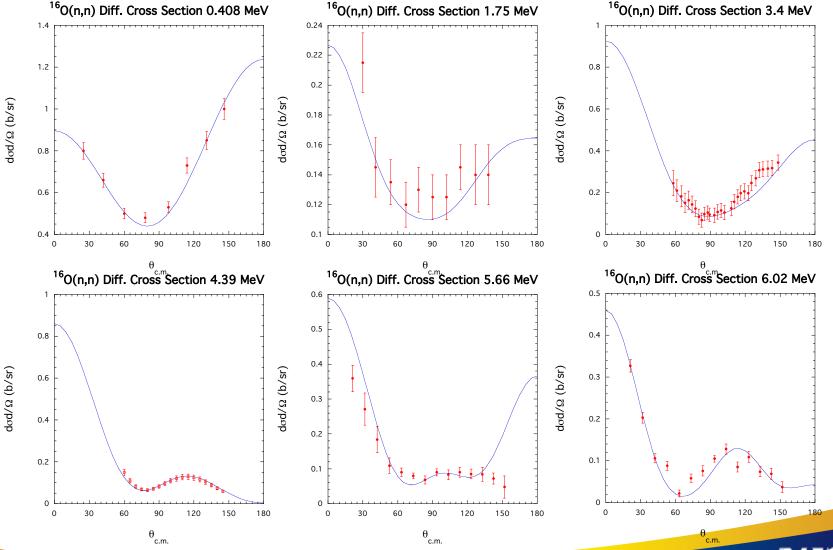
R-Matrix Analysis of Reactions in the ¹⁷O System


channel	a _c (fm)	I _{max}
n+ ¹⁶ O	4.4	4
α +13C	5.4	5

Reaction	Energies (MeV)	# data points	Data types
¹⁶ O(n,n) ¹⁶ O	$E_n = 0 - 7$	2718	σ_{T} , $\sigma(\theta)$, $P_{n}(\theta)$
$^{16}O(n,\alpha)^{13}C$	$E_n = 2.35 - 5$	850	σ_{int} , $\sigma(\theta)$, $A_n(\theta)$
$^{13}\text{C}(\alpha, n)^{16}\text{O}$	$E_{\alpha} = 0 - 5.4$	874	σ_{int}
$^{13}\mathrm{C}(\alpha,\alpha)^{13}\mathrm{C}$	$E_{\alpha} = 2 - 5.7$	1296	$\sigma(\theta)$
total		5738	8

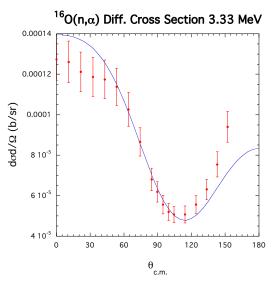
Integrated (total) Cross Sections

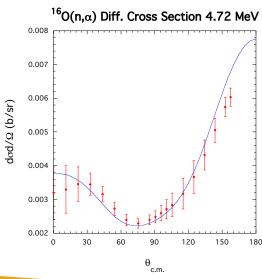
UNCLASSIFIED

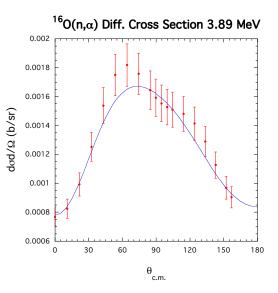

Total Cross Section Data

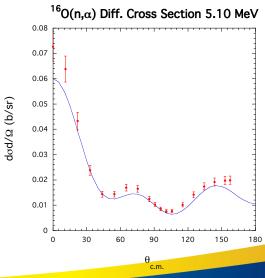
Authors	Energy Range	Energy Shift	Normalization
Dilg,Koester,Block	0.13 – 23.5 keV	0	1.0 (fixed)
Ohkubo (corr. for H)	0.8 – 935 keV	0	1.0009
Johnson & Fowler (including LOX)	49 – 3139 keV	0	0.9823
Cierjacks et al.	3.143 – 7.0 MeV	0	1.0414

Authors	Energy Range	Energy Shift	Normalization
Drotleff et al.	346 – 1389 keV	0	1.0 (fixed)
Heil et al.	416–899 keV	0	1.0 (fixed)
Kellogg	445–1045 keV	0	1.512
Bair and Haas	0.997-5.402 MeV	-4 keV	0.9882

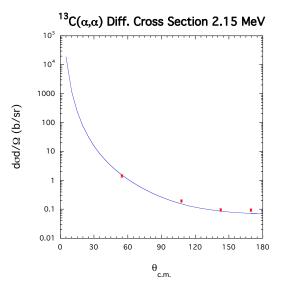

¹⁶O(n,n) Differential Cross Sections

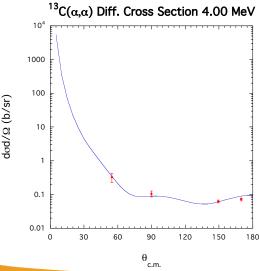


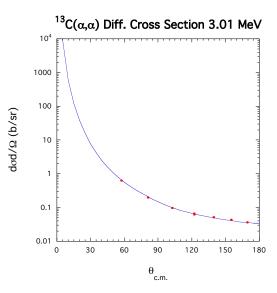


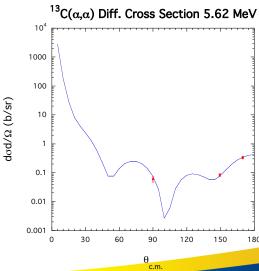


¹⁶O(n,α) Differential Cross Sections

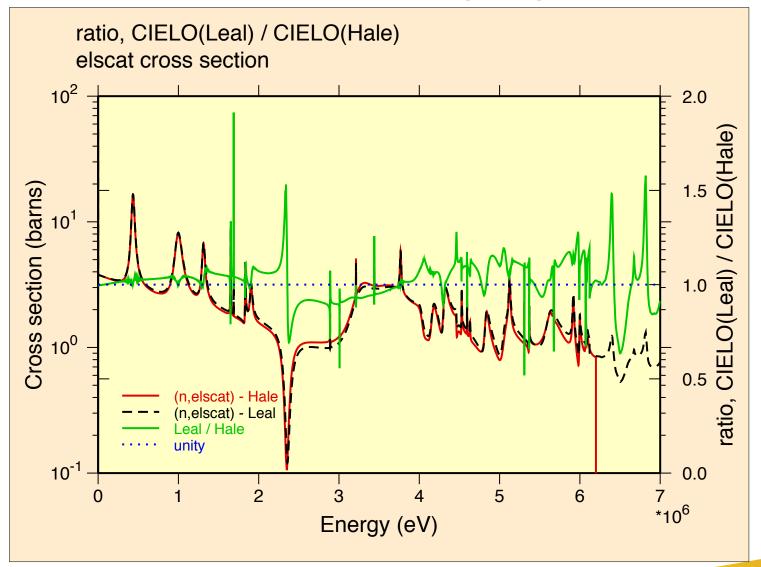




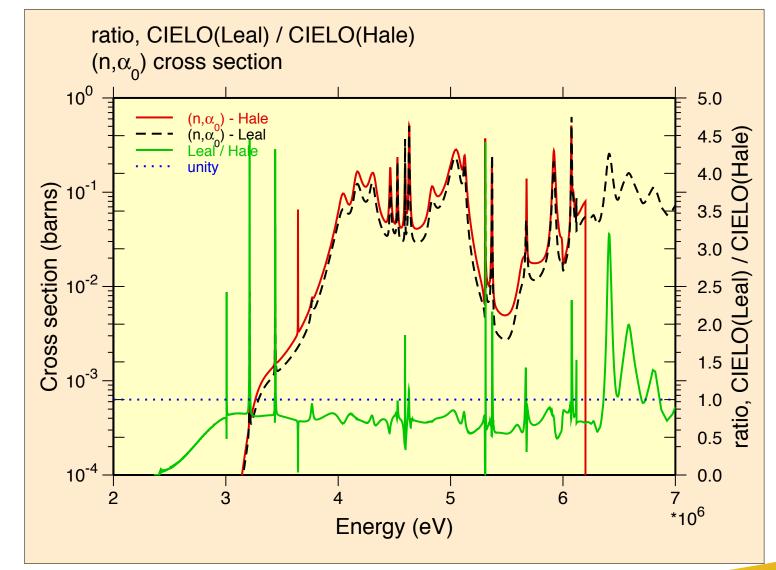




13 C(α,α) Differential Cross Sections



Comparison to Leal – (n,n)



Comparison to Leal - (n,α)

Summary and Outlook

- R-matrix descriptions for light systems can give very accurate and detailed fits to the experimental data, constrained by fundamental properties (unitarity, causality, TRI) of nuclear reaction theory.
- EDA R-matrix analyses of the ¹⁷O system include data from all possible reactions, giving results that are highly constrained by the properties above (especially unitarity).
- The low-energy n+16O scattering cross sections are now in better agreement with high-precision measurements, but the higher-energy cross sections did not change much.
- Differences with Leal's SAMMY analysis are significant in the MeV region. Do they come from using different data sets, or from differences in the R-matrix parametrization? Kunieda's results could provide insight into this question.
- We will continue the ¹⁷O analysis with additional experimental data.

